Neuroethology

Bigge, R., Grittner, R., and Stöckl, A. (2024). Integration of parallel pathways for flight control reflects prevalence and relevance of natural visual cues. eLife 14:RP104118.
https://doi.org/10.7554/eLife.104118.1
Rother L., Stöckl A., Pfeiffer, K. (2024) History-dependent spiking facilitates efficient encoding of polarization angles in neurons of the central complex. eLife 13:RP101956
https://doi.org/10.7554/eLife.101956.1
Degen, J., Storms, M., Lee, B., Jechow, A., Stöckl, A., Hölker, F., Jakhar, A., Walter, T., Walter, S., Mitesser, O., Hovestadt, T., Degen, T. (2024). Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Nat Acad Sci, 121 (42) e2401215121
https://doi.org/10.1073/pnas.2401215121
Kannegieser S, Kraft N, Haan A, Stöckl A. (2024) Visual guidance fine-tunes probing movements of an insect appendage. Proc Natl Acad Sci USA. 121(6):e2306937121. 10.1073/pnas.2306937121
https://doi.org/10.1073/pnas.230693712
Richter, R., Dietz, A., Foster, J., Spaethe, J., Stöckl, A. (2023) Flower patterns guide bumblebee approach flights and landings for improved foraging efficiency. Funct. Ecol.
https://doi.org/10.1111/1365-2435.14262
Stöckl, A., Grittner, R., Taylor, G., Rau, C., Bodey, AJ, Kelber, A., Baird, E. (2022) Allometric scaling of a superposition eye optimises sensitivity and acuity in large and small hawkmoths. Proc Biol Sci. B. 289:20220758
https://doi.org/10.1098/rspb.2022.0758
Grittner, R., Baird, E., Stöckl, A. (2022) Spatial tuning of translational optic flow responses in hawkmoths of varying body size. J Comp Physiol A. 208:279-296.
https://doi.org/10.1007/s00359-021-01530-1
Bigge, R., Pfefferle, M., Pfeiffer, K., Stöckl, A. (2021) Natural image statistics in the dorsal and ventral visual field match a switch in flight behaviour in a hawkmoth. Curr Biol. 31: R280-R281.
https://doi.org/10.1016/j.cub.2021.02.022
Kihlström, K., Aiello, B. Warrant, E., Sponberg, S., Stöckl, A. (2021) Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths. J Exp Biol. 224: jeb.236240 https://doi.org/10.1242/jeb.236240
Walter, T., Degen, J., Pfeiffer, K., Stöckl, A., Montenegro, S., Degen, T. (2021) A new innovative real-time tracking method for flying insects applicable under natural conditions. BMC Zoology. 6:1-11
https://doi.org/10.1186/s40850-021-00097-3
Stöckl, A., O’Carroll, D.C., Warrant, E.J. (2020) Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimise vision at different light levels. Science Advances. 6: eaaz8645
https://doi.org/10.1126/sciadv.aaz8645
Franzke, M., Kraus, C., Dreyer, D., Pfeiffer, K., Beetz, M.J., Stöckl, A., Foster, J.J., Warrant, E.J., el Jundi, B. (2020) Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol. 223: jeb223800
https://doi.org/10.1242/jeb.223800
Stöckl, A., Grittner, R., Pfeiffer, K. (2019) The role of lateral optic flow cues in hawkmoth flight control. J Exp Biol. 222: jeb199406
https://doi.org/10.1242/jeb.199406
Dahake*, A., Stöckl*, A., Sane, S. P. & Kelber, A. (2018) The roles of vision and antennal mechanoreception in hawkmoth flight control. eLife. 7:e37606
https://doi.org/10.7554/eLife.37606
Stöckl, A., O’Carroll D., Warrant E. (2017) Higher‐order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proc R Soc London B. 284:20170880
https://doi.org/10.1098/rspb.2017.0880
Stöckl, A., Kihlström, K., Chandler, G.S., Sponberg, S. (2017) Comparative system identify-cation of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.
Phil Trans B. 372: 20160078.
https://doi.org/10.1098/rstb.2016.0078
Stöckl, A., O’Carroll D., Warrant E. (2016) Neural summation in the hawkmoth visual system boosts contrast sensitivity and information rate in dim light. Curr Biol. 26: 821–826
https://doi.org/10.1016/j.cub.2016.01.030
Stöckl, A., Ribi W., Warrant E. (2016) Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J Comp Neurol. 524: 160–175
https://doi.org/10.1002/cne.23832
Stöckl, A., Heinze S., Charalabidis A., el Jundi, B., Warrant E., Kelber A. (2015) Differential investment in visual and olfactory brain areas predicts behavioural performance in hawkmoths. Sci Reports. 6: 26041
https://doi.org/10.1038/srep26041
Stöckl, A., Heinze S. (2015) A clearer view of the insect brain - combining bleaching with standard whole-mount immunocytochemistry allows confocal imaging of pigment-covered brain areas for 3D reconstruction. Front Neuroanat. 9
https://doi.org/10.3389/fnana.2015.00121
Reviews
Stöckl, A., Deora T. (2024) The hawkmoth proboscis: an insect model for sensorimotor control of reaching and exploration. Int Comp Biol. 64: 1354–1370
https://doi.org/10.1093/icb/icae123
Stöckl, A., Foster J. (2022) Night skies through animals' eyes — quantifying night-time visual scenes and light pollution as viewed by animals. Front. Cell. Neurosci. 16:984282. https://doi.org/10.3389/fncel.2022.984282
Stöckl, A. (2022) Connectomics: From form to colourful function in the lamina of a butterfly. Curr Biol. 32: R459-461
https://doi.org/10.1016/j.cub.2022.04.026
Stöckl, A., Kelber, A. (2019) Fueling on the wing - sensory ecology of hawkmoth foraging. J Comp Physiol A. 205: 399-413
https://doi.org/10.1007/s00359-019-01328-2
Stöckl, A., Smolka J., O’Carroll D., Warrant E. (2017) Resolving the Trade-off Between Visual Sensitivity and Spatial Acuity—Lessons from Hawkmoths. Int Comp Biol. 57: 1093–1103
https://doi.org/10.1093/icb/icx058
Stöckl, A. (2016) Neurons against Noise: Neural adaptations for dim light vision in hawkmoths. PhD Thesis, https://lucris.lub.lu.se/ws/portalfiles/portal/16645681/FinalThesis_AnnaStoeckl_kappa.pdf