top of page

Public
ations

We are very grateful to our funders,
without whom our present research
would not be possible!

hfa-footer-logo.png

We are very grateful previous funding
that helped lay the foundation
for our current research!

Abstrakter Hintergrund

Bigge, R., Grittner, R., and Stöckl, A. (2024). Integration of parallel pathways for flight control reflects prevalence and relevance of natural visual cues. under review: BIORXIV/2024/609346.​

 

Rother L., Stöckl A., Pfeiffer, K. (2024) History-dependent spiking facilitates efficient encoding of polarization angles in neurons of the central complex. eLife 13:RP101956

Degen, J., Storms, M., Lee, B., Jechow, A., Stöckl, A., Hölker, F., Jakhar, A., Walter, T., Walter, S., Mitesser, O., Hovestadt, T., Degen, T. (2024). Shedding light with harmonic radar: Unveiling the hidden impacts of streetlights on moth flight behavior. Proc Nat Acad Sci, 121 (42) e2401215121​

Kannegieser S, Kraft N, Haan A, Stöckl A. (2024) Visual guidance fine-tunes probing movements of an insect appendage. Proc Natl Acad Sci USA. 121(6):e2306937121. 10.1073/pnas.2306937121 

Richter, R., Dietz, A., Foster, J., Spaethe, J., Stöckl, A. (2023) Flower patterns guide bumblebee approach flights and landings for improved foraging efficiency. Funct.  Ecol.
https://doi.org/10.1111/1365-2435.14262

Stöckl, A., Grittner, R., Taylor, G., Rau, C., Bodey, AJ, Kelber, A., Baird, E. (2022) Allometric scaling of a superposition eye optimises sensitivity and acuity in large and small hawkmoths. Proc Biol Sci. B. 289:20220758

Grittner, R., Baird, E., Stöckl, A. (2022) Spatial tuning of translational optic flow responses in hawkmoths of varying body size. J Comp Physiol A. 208:279-296.

Bigge, R., Pfefferle, M., Pfeiffer, K., Stöckl, A.  (2021) Natural image statistics in the dorsal and ventral visual field match a switch in flight behaviour in a hawkmoth. Curr Biol. 10.1016/j.cub.2021.02.022

Kihlström, K., Aiello, B. Warrant, E., Sponberg, S., Stöckl, A. (2021) Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths. J Exp Biol. 224: jeb.236240

Walter, T., Degen, J., Pfeiffer, K., Stöckl, A., Montenegro, S., Degen, T. (2021) A new innovative real-time tracking method for flying insects applicable under natural conditions. BMC Zoology. 6:1-11

Stöckl, A., O’Carroll, D.C., Warrant, E.J. (2020) Hawkmoth lamina monopolar cells act as dynamic spatial filters to optimise vision at different light levels. Science Advances. 6: eaaz8645

Franzke, M., Kraus, C., Dreyer, D., Pfeiffer, K., Beetz, M.J., Stöckl, A., Foster, J.J., Warrant, E.J., el Jundi, B. (2020) Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol. 223: jeb223800

Stöckl, A., Grittner, R., Pfeiffer, K. (2019) The role of lateral optic flow cues in hawkmoth flight control. J Exp Biol. 222: jeb199406

Dahake*, A., Stöckl*, A., Sane, S. P. & Kelber, A. (2018) The roles of vision and antennal mechanoreception in hawkmoth flight control. eLife. 7:e37606

Stöckl, A., O’Carroll D., Warrant E. (2017) Higher‐order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proc R Soc London B. 284:20170880       

Stöckl, A., Kihlström, K., Chandler, G.S., Sponberg, S. (2017) Comparative system identify-cation of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

Phil Trans B. 372: 20160078.

Stöckl, A., O’Carroll D., Warrant E. (2016) Neural summation in the hawkmoth visual system boosts contrast sensitivity and information rate in dim light. Curr Biol. 26: 821–826

Stöckl, A., Ribi W., Warrant E. (2016) Adaptations for nocturnal and diurnal vision in the hawkmoth lamina. J Comp Neurol. 524: 160–175

Stöckl, A., Heinze S., Charalabidis A., el Jundi, B., Warrant E., Kelber A. (2015) Differential investment in visual and olfactory brain areas predicts behavioural performance in hawkmoths. Sci Reports. 6: 26041

Stöckl, A., Heinze S. (2015) A clearer view of the insect brain - combining bleaching with standard whole-mount immunocytochemistry allows confocal imaging of pigment-covered brain areas for 3D reconstruction. Front Neuroanat. 9

Reviews

Stöckl, A., Deora T. (2024) The hawkmoth proboscis: an insect model for sensorimotor control of reaching and exploration. Int Comp Biol. 64: 1354–1370

 

Stöckl, A., Foster J. (2022) Night skies through animals' eyes — quantifying night-time visual scenes and light pollution as viewed by animals. Front. Cell. Neurosci. 16:984282. 10.3389/fncel.2022.984282 

Stöckl, A. (2022) Connectomics: From form to colourful function in the lamina of a butterfly. Curr Biol. 32: R459-461

Stöckl, A., Kelber, A. (2019) Fueling on the wing - sensory ecology of hawkmoth foraging. J Comp Physiol A. 205: 399-413

Stöckl, A., Smolka J., O’Carroll D., Warrant E. (2017) Resolving the Trade-off Between Visual Sensitivity and Spatial Acuity—Lessons from Hawkmoths. Int Comp Biol. 10.1093/icb/icx058

Stöckl, A. (2016) Neurons against Noise: Neural adaptations for dim light vision in hawkmoths. PhD Thesis, https://lucris.lub.lu.se/ws/portalfiles/portal/16645681/FinalThesis_AnnaStoeckl_kappa.pdf 

bottom of page